If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5(2x^2+x-3)-2x=(3x-4)
We move all terms to the left:
5(2x^2+x-3)-2x-((3x-4))=0
We add all the numbers together, and all the variables
-2x+5(2x^2+x-3)-((3x-4))=0
We multiply parentheses
10x^2-2x+5x-((3x-4))-15=0
We calculate terms in parentheses: -((3x-4)), so:We add all the numbers together, and all the variables
(3x-4)
We get rid of parentheses
3x-4
Back to the equation:
-(3x-4)
10x^2+3x-(3x-4)-15=0
We get rid of parentheses
10x^2+3x-3x+4-15=0
We add all the numbers together, and all the variables
10x^2-11=0
a = 10; b = 0; c = -11;
Δ = b2-4ac
Δ = 02-4·10·(-11)
Δ = 440
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{440}=\sqrt{4*110}=\sqrt{4}*\sqrt{110}=2\sqrt{110}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{110}}{2*10}=\frac{0-2\sqrt{110}}{20} =-\frac{2\sqrt{110}}{20} =-\frac{\sqrt{110}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{110}}{2*10}=\frac{0+2\sqrt{110}}{20} =\frac{2\sqrt{110}}{20} =\frac{\sqrt{110}}{10} $
| 5x+19-6x+1=180 | | −7y=8 | | 2(x-5)=3(x-2)+7 | | 22(x+5)=3(x-2)+7 | | 200(0.8)*x=150 | | 6t^2-20t+5=0 | | 200(0.8)x=150 | | 50-10=4x | | 48+8f=-22+28f | | z/9-7=-4 | | 5250=25000*0.07t | | 6x^2-13x-210=0 | | 2600=26,000*0.05t | | 5(x+4)=3(8—x) | | 3x+7/8x-5=0 | | 2x=3x(5—x) | | 53.4=2*3.14r | | 65.9=2*3.14r | | 65.9=2•3.14r | | 2x–7=4x+9 | | 65.9=2•3.14•r | | -2(x–3)-4X=X–8–4X | | F(4x)=5-2x | | 5−3(x)+7=x+1 | | 6=9n—7n | | 0.047619x=10 | | 11(x-3)/x-4+5/x=-5/x(x-4)) | | 32•x=70 | | 0.03125x=10 | | 3/4-2x=12/8 | | 3+4=x/2 | | 2(s+6)=5(s+12) |